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The rate of coagulation of a dilute polydisperse 
system of sedimenting spheres 

By ROBERT H. DAVIS 
Department of Chemical Engineering, University of Colorado, Boulder, Colorado 80309 

(Received 25 July 1983 and in revised form 1 February 1984) 

We consider a dilute dispersion containing small rigid particles in a Newtonian fluid. 
These spherical particles are of different size and density, and they settle relative to 
one another under the action of gravity. When the particles become close, they exert 
an attractive van der Waals force on each other, and doublets are formed when two 
particles come into contact as a result of this force. The rate a t  which doublets are 
formed is calculated using a trajectory analysis to follow the relative motion of pairs 
of particles. 

We restrict our attention to dispersions where the PBclet number is large (negligible 
Brownian motion) and where the Reynolds number is small (negligible fluid inertia). 
However, the effects of the inertia of the particles on their trajectories are included, 
and these are measured by the Stokes number. A key dimensionless parameter is 
identified, denoted by Qij, which provides a measure of the relative importance of 
gravity and the van der Waals force. An asymptotic solution to the trajectory 
equations is presented for large values of this parameter in the case of zero Stokes 
number. This asymptotic solution is then complemented by numerical computations 
of the particle trajectories. Application to typical hydrosol and aerosol dispersions is 
presented, and, in particular, a comparison is made between the effects of van der 
Waals forces and Maxwell slip in promoting collisions between aerosol particles. 

1. Introduction 
In this paper we shall consider the rate of caogulation of small particles in a dilute, 

statistically homogeneous dispersion. The particles are of different size and density 
and hence are in relative motion due to their different settling speeds under gravity. 
When the particles are close, they exert an attractive van der Waals force on each 
other, and doublets are formed when two particles come into contact as a result of 
this force. The rate at which the dispersion becomes coagulated is in large part 
determined by the rate of doublet formation, and it is this quantity that we seek to 
determine. Furthermore, we shall assume that the particles are sufficiently large so 
that Brownian motion is negligible (large PBclet number), but not so large that the 
inertia of the surrounding fluid is important (small Reynolds number). For a typical 
hydrosol or aerosol dispersion, these restrictions require that the particle radii lie 
between about 2 pm and 30 pm. In  aerosols the density of the particles is much 
greater than that of the surrounding air, and often the inertia of the particles 
significantly influences their motion (large Stokes number) even when the inertia of 
the surrounding air is negligible. The effects of particle inertia will be included in our 
analysis. 

The first attempts to estimate the rate of coagulation of a dispersion were made 
by Smoluchowski (1917). In  his simple model, the spherical particles were assumed 
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to move independently, i.e. without any hydrodynamic interaction or interparticle 
force other than a sticking force on contact. When hydrodynamic interactions are 
included, the particles are caused to flow around each other, and, since the resistance 
to relative normal motion increases as the gap between the particles decreases, actual 
contact does not occur unless an attractive interparticle force is present. 

In  a study related to the present one, Zeichner & Schowalter (1977) included the 
effects of hydrodynamic interaction and interparticle force, and computed the rate 
of coagulation of a dispersion of equal spheres subject to simple laminar shearing and 
to uniaxial extensional flow. As with the present work, attractive van der Waals forces 
cause two particles to come into contact once they pass sufficiently close to each other. 
These authors used a trajectory analysis to  follow the relative motion of the two 
spheres, and the locus of trajectories that  begins with the spheres far apart and 
terminates with the spheres coming into contact was found. From this trajectory 
analysis, the collision rate was determined and, provided that the flow is sufficiently 
strong, was found to be proportional to  the shear rate raised to the 0.77 power for 
shear flow, and to the 0.86 power for extensional flow, instead of to the first power 
as in Smoluchowski’s result. Curtis & Hocking (1970) also performed a similar 
calculation for shear flow, and in addition report the results of experiments designed 
to show the ability of van der Waals forces to cause collisions in shear flows. I n  a 
more recent work, Adler (1981) has considered the coagulation of unequal spheres 
in simple shear flow. He found that the collision efficiency (defined as the ratio of 
the actual collision rate to that when the two particles are assumed to  move 
independently) becomes very small as the ratio of the radius of the smaller sphere 
to that of the larger sphere is decreased. This result is primarily due to the fact that  
then the small sphere closely follows the fluid streamlines that flow around the larger 
sphere. 

I n  another related work, Hocking & Jonas (1970) included the effects of particle 
inertia and computed the collision efficiency of small water droplets in air falling 
under gravity - a problem of particular relevance to  the rate of formation of larger 
drops in a rain-bearing cloud. These authors did not include an interparticle force, 
and hence actual contact was not possible. Instead, collisions were assumed to occur 
once the gap between the particles had become some small fraction e of the larger 
drop radius. Later, Hocking (1973), Jonas (1972), and Davis (1972) modified the 
Stokes equations for the hydrodynamic interaction by allowing for Maxwell slip to  
occur a t  the drop surfaces when the distance between the surfaces became comparable 
with the mean free path of the surrounding air molecules. This allowed for actual 
collisions to take place and removed the need for the arbitrary parameter e. 

I n  this paper, a trajectory analysis will be used tto compute the rate of doublet 
formation from a dispersion of spheres of different size and density settling under 
gravity. In  $ 2  the trajectory equations will be formulated for the case of negligible 
particle inertia, and expressions will be given for the assumed interparticle force 
potential and for the collision rate. In  $ 3  we shall solve these equations asymptotically 
for large values of the parameter Qij (defined in $2). I n  $4 we shall present trajectory 
equations for the motion of two spheres when particle inertia is important. The results 
of numerical computations for several values of the various parameters will then be 
presented and discussed. Finally, in $5 the computed collision efficiency as a function 
of particle size for typical hydrosol and aerosol dispersions will be given. I n  particular, 
the application to  the coalescence of small droplets in clouds will be discussed, and 
we shall compare the collision efficiency resulting from van der Waals forces, from 
Maxwell slip, and from these two effects combined. 
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2. Trajectory equations for negligible inertia 
The particles are assumed to be rigid spheres and are suspended in a Newtonian 

fluid of density p and viscosity p. The radius, density, number density, velocity, and 
velocity in isolation of each particle of species i are denoted respectively by ai, pi, 
nt, U, and qo). A uniform gravitational force per unit mass g (9 = lgl) acts on the 
dispersion, and so 

where 

The Reynolds number Ri = p I q o ) I  ai/p of each sphere is assumed to be small 
compared with unity. 

2.1. Expression for the relative velocity of two spheres 

For a dilute dispersion, the probability of a third particle influencing the relative 
motion of two interacting spheres is small, and so we only need consider pairwise 
interactions. We consider then a sphere of species j whose centre is at a position 
r ( r  = Irl) relative to the centre of a sphere of species i. These two spheres move relative 
to one another due both to gravity and to an interparticle force of potential 
which acts between them. Since inertia forces are negligible, the hydrodynamic force 
on each particle balances the applied force, and the velocity = Ui- Ui of sphere 
j relative to sphere i depends only on the relative position of the two spheres. An 
expression for this velocity has been presented by Batchelor (1982), the essential 
details of which are repeated here : 

where qj) = yo) - qO) is the relative velocity due to gravity of two widely separated 
spheres, and 

( 1  1 )  
kT 67cp ai aj  

is the relative particle mobility of two widely separated spheres, with k Boltzmann’s 
constant and T the absolute temperature. The particle mobility has been written in 
terms of the relative diffusivity Djj” for convenience. The functions L and M depend 
only on A,  y and the dimensionless distance s = 2r/(ai+aj). These are unchanged 
when h and y are replaced by h-l and y-l, and when h = 1 both L and M are 
independent of y .  The functions G and H depend only on h and s, and they are 
unchanged when h is replaced with XI .  Each of these functions is defined by 
Batchelor (1982) in terms of the two-sphere mobility functions. Numerical values of 
the mobility functions for arbitrary values of h and s have been made available 
recently by Jeffrey & Onishi (1984). 

Under conditions in which the spheres move relative to one another as a result of 
Brownian motion, there is an additional contribution to (2.1) equal to 
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where the pair-distribution function p i j ( r )  is the probability that a sphere of species 
j is a t  position r relative to a sphere of species i (pij being normalized so that pi*+ 1 
as r+  00) .  The magnitude of this term in comparison with the relative velocity due 
to gravity is measured by the inverse of the PBclet number 

where V$') = I q;) 1 .  Note that, for a given h, pij is proportional to (ai + aj)4. For typical 
hydrosols and aerosols, pi j  is large compared with unit.y when the radii of the particles 
are about 2 pm or larger. We shall consider only dispersions for which p Z j  + 1 and 
shall neglect Brownian motion. 

2.2. The assumed interparticle force potential 
In  hydrosol dispersions the interparticle force is the sum of an attractive van der 
Waals force and a repulsive electrical double-layer force. In  aerosols there again is 
an attractive van der Waals force, and the particles may also carry electrical charges ; 
however, the double layer of ions is not present, and the charges of two interacting 
particles may be either repulsive or attractive. When the repulsive force dominates, 
the particles remain dispersed, and the dispersion is said to be stable; when the 
attractive forces dominate, the dispersion is unstable and the particles flocculate. Our 
aim in this paper is to determine the rate a t  which coagulation occurs, and we shall 
consider only those dispersions whose interparticle force is dominated by the 
attractive van der Waals force. 

The van der Waals force between two isolated particles was first calculated by 
Hamaker (1937) who assumed pairwise additivity of the intermolecular attractions. 
For unequal spheres, the force potential as a function of the separation distance is 

8h 8h (8'-4) (1 
@.. = -- 

(s2-4) (1+h)2+s2(1+h)2-4(1--h)2 

where A is the composite Hamaker constant for the materials composing the two 
spheres and the surrounding fluid medium. Its  value should be determined experim- 
entally or by the more rigorous theory of Lifshitz (1955). When the spheres are very 
close, f ;  = s -2  4 1 and f ;  4 A ,  this expression reduces to 

Ah 
@ = -  

ij 3(l+h)2f;'  
(2.2b) 

The Hamaker calculation neglected electromagnetic retardation and hence is valid 
only for separations less than the London wavelength A,, which is typically 0.1 pm. 
Retardation was included by Schenkel & Kitchner (1960) who reported the following 
best-fit approximations to their numerical integrations for equal-sized spheres and 
64 1 :  

h 
when --d n, 

A 
@ = -  

ij 12f;(1+ 11.2h/hL) A ,  
( 2 . 3 ~ )  

@ lOP3A{ 6.5 0.305 0.0057 h 
2+-]  when - > n ,  (2.3b) 

- f ;  hlhL (hlh,) W A L Y  hL 

where h is the gap between the spheres. When considering two spheres that are not 
of equal size, the right-hand side of (2.3) is multiplied by 4h/ (  1 + 

If we choose A as a measure of the strength of the van der Waals force, then the 
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magnitude of the relative velocity as a result of this force in comparison with that 
due to gravity is represented by the inverse of the parameter 

This parameter is analogous to the inverse of the parameter H A  defined by Adler 
(1981) for the case where the two spheres are in relative motion resulting from an 
imposed bulk flow of the dispersion rather than from gravity. Also, note that 
Qij  = kT/A,  and, since kT/A is usually of order unity for hydrosols and of order 
10-1 for aerosols, the restriction that 4, is large will often require that Q,, be large. 
In this case the effect of the van der Waals force is negligible unless the particles are 
very close. In light of (2.26), d@,,/ds behaves asymptotically as hA/(3(1 +h)262) as 
6+0. Furthermore, since L and G are each proportional to 6 for small 6 (Batchelor 
1982), it is evident from (2.1) that the interparticle force will only be important within 
a thin boundary layer in which 6 = O(Q2) or less; outside this boundary layer the 
relative motion is dominated by the gravitational term in (2.1). These facts will be 
exploited in $3  where an asymptotic solution for the trajectories defined by (2.1) will 
be presented for QiI 9 1 .  

Finally, since Qij and 4, are approximately of the same magnitude, the question 
arises as to whether Brownian motion might also become important in the boundar 
layer near r = a,+a,. However, since the boundary-layer thickness is of order Q,?, 
the relative velocity due to Brownian motion compared with that due to the van der 
Waals force is O ( Q i j / 4 1 )  in the boundary layer. This quantity is small for the 
conditions already stated. 

4 

2.3. Expression for the collision rate 

The rate at  which ( i , j )  doublets form in unit volume is equal to the flux of pairs into 
the contact surface r = a, +a,, 

J i I  = -nin, j r - a r + a ~  Pi,  v,,.n dA. (2.5) 

The pair-distribution function piI (r )  satisfies the conservation equation 

- - J + v q p i j  Kj) = 0. 
at 

For dilute dispersions, an approximate steady state is established. The divergence 
term in (2.6) is then equal to zero, and the integral in (2.5) may be taken over any 
surface enclosing the sphere r = a, + a,. When the spheres come into contact, we shall 
assume that a permanent doublet is formed (i.e. no rebound or subsequent separation 
occurs), and the boundary condition at  the contact surface is therefore 

~ , ~ ( r )  = 0 for r = a,+aj. (2.7a) 

Provided all of the particle-particle encounters originate at very large separations, 
the other boundary condition is 

p , ( r ) + l  as r+m.  (2.76) 

We note that, in the absence of interparticle forces, a region of closed trajectories exists 
for certain values of A and y as discussed by Wacholder & Sather (1974) and by 
Batchelor & Wen (1982), and in these cases (2.76) is inappropriate. For many of these 
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closed trajectories, however, the particles pass quite closely to one another, and, in 
the presence of an attractive force, these particles eventually coagulate. Only those 
trajectories which originate at infinite separation will be considered in the remainder 
of this study. 

The expression for the collision rate in terms of the particleparticle trajectories 
is obtained by following the arguments of Zeichner & Schowalter (1977). The integral 
in (2.5) is taken over the surface which encloses the volume occupied by all the 
trajectories that  originate at r = 00 and terminate with the particles coming into 
contact. The cross section of this volume a t  r = co is a circle of radius y,*, and, since 
p . .  = 1 and K .  = V$’) a t  r = co, the rate of doublet formation is then 

23 29 

Jii = ninj V ~ ~ ) n ( u i + a j ) 2 E i j ,  (2.8) 

where Eii = yz2/(ai + aj)z is the collision efficiency. I n  the model by Smoluchowski 
(1913), E ,  has the value of unity. Our problem is now reduced t o  one of determining 
the parameter y,* which is equal to the largest horizontal displacement from the 
vertical axis of symmetry (g being in the vertical direction) possible for two widely 
separated spheres that eventually will collide. The path traced by one of these spheres 
relative to the other is called the limiting trajectory. 

A second possible approach to our problem is to  obtain a statistical description of 
the dispersion by solving (2.6) and (2.7) for the pair-distribution function everywhere 
in the region a,+aj < r < CO. This solution can then be used in (2.5) to give the rate 
at which doublets are formed. Such a statistical description of the dispersion was used 
in the calculation by Batchelor (1982) and Batchelor & Wen (1982) of the mean 
sedimentation velocity of small particles in a dilute suspension, and i t  is needed when 
Brownian diffusion is important. I n  some recent work, Wen & Batchelor (1984) have 
in fact used an analytic solution for the pair-distribution function to compute the 
rate of doublet formation in a dilute dispersion of particles having negligible inertia 
a t  large PBclet numbers. However, they were able to obtain only asymptotic results 
(for Qii 9 1 )  similar to those given in $3 .  I began the present work at the suggestion 
of Professor Batchelor with the intention of investigating the influence of the inertia 
of the particles on their collision rate by using a deterministic approach in which 
particle-particle trajectories were calculated. We subsequently realized that, in the 
absence of Brownian motion, the numerical trajectory analysis also allowed the 
calculation of the collision rate when the particle inertia is negligible a t  all values 
of Qij and so provided a simpler and more powerful method than the analytic solution 
for the pair-distribution function. I am, therefore, indebted to Professor Batchelor 
and to Dr Wen for providing much of the motivation for my work and for showing 
me their calculations. 

3. Asymptotic solution for large Qij 

We begin by decomposing the relative velocity given by (2.1) into the components 
along and normal to the line of centres, which in dimensionless form are respectively 

dS G( s) d# . . 
u, = - = - L(s )  c o s 8 - - 2 3  

dr  Q i j  ds 
(3.1 a )  

and 
d8 
dr 

ug = s- = M ( s )  sin 8. (3.1 b )  
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The velocities have been made dimensionless with V$) ; 

7 = 2 Viy) t/(ai + aj), q5ij = G i j / A ,  

and 0 is the angle between g and r .  

3.1. The outer region 

When Qij $ 1 the van der Waals force is negligible outside a boundary layer near 
s = 2, and the relative motion of the two spheres is due to gravity only. We eliminate 
time by applying the chain rule to (3.1), which yields the trajectory equation 

The initial condition for this equation is 

ssinB= ym for s + m ,  (3.3) 

where ym is the horizontal displacement of the spheres when they are widely 
separated. Since (3.2) is separable, the solution subject to (3.3) is immediately found 
to be 

Y(s)  3 4 Y = exp{Js a, T d s }  ( L - M )  
s sin B (3.4) 

We note here that yL can be thought of as the stream function for the particle motion 
since it is a conserved quantity along particle trajectories, and it is directly propor- 
tional to the flux of particle pairs between the trajectory defined by yW = constant 
and the stagnation trajectory yW = 0. Furthermore, by comparing the above with 
the analysis of Batchelor (1982), we find that Y(s)  = (pi j (s)  L(s))k This provides a very 
simple relationship between the deterministic trajectories in the outer region and the 
statistical pair-distribution function. 

When the spheres are very close (5 < 1 and 6 < A ) ,  the mobility functions have 
the asymptotic forms given by Jeffrey & Onishi (1984), and we can deduce from these 
that 

L(s)  N L 1 t  +o(tzlog(-l) (3.5a) 

and 

(3.56) 

The simplified asymptotic form of (3 .5b) ,  

that  has been used on occasion in other applications proves to be of insufficient 
accuracy for the values of that  are important for the current purpose. 

When we substitute (3.5) into (3.4), we find that the form of the trajectories when 
the particles become close is 

(3.6) 
Ym k, tbl Y ( s )  N ~ - 

e , + 2 1 0 g ~ - ~ + d  bt'  

el + 2 log g-l- d 1 2 sin 8 
[(log (-I)'+ el log ( - I +  e21bz 
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; t Y c  1 ( b )  

I 

kY_ 

where 
a b - 1 b = a Z - e l a l  

2L,’ 4L1 ’ 
e,a,-2a3-al(e,2-2e,) 

4L1 A 
b, = , A = (e:-4ez)i. 

The constant k, is obtained from matching the numerical evaluation of (3.4) with this 
asymptotic form. 

3.2. The boundary-layer region 
When the gravitational force has brought the two particles to within a distance of 
E = O(Q$ of each other, the van der Waals force begins to draw them together. For 
Qij % 1 this distance is very small, and we expect that (3.5) provides an adequate 
approximation for L and M .  Furthermore, when 5 -g 1 and f 4 A ,  

E+O([zlog(-l). (3.7), (3.8) +O(log<-l) and G(s) N ~ 

-A (1 + A ) ,  
9u(s) 3( 1 f A ) 2  5 2A 

In  this case, the equations for the relative velocity of the two spheres are 

1 - _  d5 - -Ll(cose-- 
6Qtj 5 dr  

and 
_ -  dB - {a,(log g-l), + a,log 5-l +a3} sin 0 
d r  2{(log5-1)2+e,log~-1+e,) 

(3.9a) 

(3.9b) 

For the time being we are neglecting retardation effects; this is appropriate provided 
that 5 4 2h,/(a, +aj). Retardation may be included in the analysis simply by using 
(2.3) in place of (3.7). 

FIGURE 1. Schematic showing the relative trajectories of the centres of two spheres: (a )  the limiting 
trajectory; ( b )  a trajectory terminating with contact; (c) a trajectory in which the spheres move 
past one another and separate (not to scale). 
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The relative velocity of the two spheres is zero when 8 = 7c and c = (6L1Qii)-t. In  
this configuration one sphere is directly below the other, and the attractive van der 
Waals force just balances the gravitational force which acts to pull the spheres apart. 
Moreover, this configuration is the termination point of the limiting trajectory ; 
particle pairs that are on the inside of this limiting trajectory will eventually come 
into contact, whereas those on the outside will move past one another and separate 
(see figure 1).  

The collision parameter yc = 2y,*/(a, +ai) is determined by integrating backwards 
along the limiting trajectory from the termination point 8 = x and 6 = (6Lc,Q,)-4, 
and then matching the solution with (3.6) when 6 has become sufficiently large so 
that the van der Waals force no longer influences the particle paths. An appropriate 
scaling of the particle separation in the boundary layer is evidently r , ~  = E / S ,  where 
S = (6L1Qij)-: is a measure of the boundary-layer thickness. I n  terms of this 
boundary-layer coordinate, the trajectory equation found from dividing ( 3 . 9 ~ )  by 
(3.9b) is 

3- (3.10) 
d8 - 

- 2L,(y2 cos 8 + 1 ) 
a,(log (r,~S))~+a,log ( r ,~S ) - l+a~  ' 

(1% ( Y f 9 Y  + el 1% (rst-'+ e2 qsino{ I 
We shall integrate (3.10) numerically from the point y = 1,  8 = x in the direction 
of decreasing 8. Analytically we find that when y 9 1 

nbl sin 8 
el + 2 log (yS)-l+ d b3 

+ eIlog(y6)-l + e2IbZ el + 2 log (yS)-l - A  I 
- - k, (3.11) 

el + 2 log 6-l + d 
el + 2 log 6-l - A  

{(log S), + e ,  log 6-l + e2IbZ 

The value of k, is determined from the numerical integration of (3.10). The 
denominator in the right-hand side of (3.11) has been included so that k, is only a 
very weak function of Qij, tending t o  a constant for very large values of Qij (see 
table 1) .  

3.3. The expression for  the collision efliciency 

I n  ~1 region of overlap defined by S 6 k -4 1 the shape of the trajectory in the boundary 
layer as given by (3.11) matches with that given by (3.6) for the trajectory in the 
outer region. Since ym = yc for the limiting trajectory, the collision efficiency found 
from equating these two expressions is 

Eij = iY; 
- (kl  k,Y - 

el + log ( 6 4  Qij) + A  2b3' 

(3.12) 

We note that this can be written in the form Eij = CS~~~(S), where c = kgL, is a slowly 
varying function of Qi j ,  and pij (S)  is the pair-distribution function from the outer 
region evaluated a t  c = S. This form has the satisfying interpretation that the number 
of collisions that take place (ultimately as a result of the van der Waals force) is 

(6Li&$j)b1 {(slog (6L,Qij)2+$e, log (6LlQij)  +eJ2'2 i el + log (6L, Qij )  -A  I 

7 P T . M  fd.5 
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h Y L, b, 6 2  b, el e2 k, k2 

0.9 1.0 0.775 0.242 0.262 -0.03 6.04 6.30 0.862 1.28 
1.25 
1.23 

0.5 1.0 0.635 0.118 0.426 0.320 5.63 4.27 1.50 1.29 
1.25 
1.23 

0.25 1.0 0.394 0.060 0.699 0.615 3.84 0.46 2.45 1.35 
1.27 

0.125 1.0 0.217 0.021 0.779 0.696 1.61 -1.38 1.39 1.49 
1.37 
1.31 

Qu 

104 

104 

104 
103 
1 0 4  
105 

102 

106 
to2 

1 O8 
1 o2 

1.0 y $: 1 2.0 0.100 0.067 -0.07 6.07 6.39 0.725 1.16 lo2 
1.15 104 
1.15 lo6 

TABLE 1 .  Values of the constants that appear in (3.12) - the asymptotic expression for the collision 
efficiency - for y = 1 and h = 0.125, 0.25, 0.5 and 0.9, and for h = 1 and arbitrary y 

proportional to the number of particle pairs that reach the boundary layer as a result 
of the gravitational force. This result was also found by Wen & Batchelor (1984), only 
with the values of c varying slightly from the present analysis owing to the different 
approximations made. 

The constants that appear in (3.12) are presented in table 1 for y = 1 and h = 0.125, 
0.25, 0.5, and 0.9, and for h = 1 and arbitrary y (provided that y $. 1). These results 
are unchanged when A and y are replaced by h-' and y-'. Recall that, when h = 1 ,  
L and M are independent of y ;  hence the collision efficiency as a function of the 
parameter Qzj is also independent of y when h = 1. Figure 2 is a plot of Eij versus Qii 
for these cases. In  general, Eij is very small owing to the large hydrodynamic re- 
sistance, which prevents the close approach of the two spheres. As QU increases, the 
gap between the two spheres for which the attractive van der Waals force becomes 
important decreases, and Ezj decreases. Also, the collision efficiency is even lower when 
one sphere is much smaller than the other, because then the smaller sphere tends to 
follow the streamlines of the flow around the larger sphere, and close contact is not 
made unless the smaller sphere is on a streamline which begins very close to the 
vertical axis of symmetry. This decrease in Ezi for small h was also found by Adler 
(1981) for the case of heterocoagulation of spheres in simple shear flow, and will be 
considered in more detail in $3.4. 

The dashed lines in figure 2 are the asymptotic results given by (3.12), whereas the 
solid lines are from numerical computations of the limiting trajectory using the 
complete forms of L(s) ,  M(s )  and G(s)  in (3.1), and also using ( 2 . 2 ~ )  for the van der 
Waals potential. The asymptotic results are in excellent agreement with the complete 
numerical results when Qij > lo2. I n  fact, for cases (b )  and ( c ) ,  the asymptotic curves 
and the exact numerical curves coincide over the entire range of Qij.presented, and 
for the remaining curves the error in the asymptotic approximation is at most 10 yo 
when Qii = 10. This close agreement is surprising in light of the fact that  the error 
in the asymptotic theory should increase with 6 = (6L,Q,)-:. A careful examination 
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0.01 - 

10 102 103 104 105 106 
Q ij 

FICXJRE 2. The collision efficiency as a function of the parameter Qij for zero particle inertia and 
for (a) A = 1 ,  y 9 1 (arbitrary); ( b )  y = 1 ,  A = 0.9; ( c )  y = 1, A = 4; (d) y = 1, A = 4; ( e )  y = 1, 
A = i; (f) y = 1 ,  h = Q. The dashed lines are the asymptotic results given by (3.12); the solid lines 
are from the complete numerical solution of (3.1); the dotted lines are reproduced from Wen & 
Batchelor (1984). 

of the asymptotic analysis reveals that some of the approximations lead to an 
overestimation of the collision efficiency, whereas others lead to an underestimation 
of the collision efficiency. These competing effects fortuitously tend to cancel each 
other, which explains the better than expected agreement between the asymptotic 
and exact results ; this also explains the fact that in some cases the asymptotic curves 
approach the exact results from above and in other cases from below. The dotted 
lines in figure 2 are reproduced from Wen & Batchelor (1984). These asymptotic 
results, obtained in a very different manner, are in close agreement with the present 
results, provided that Qu > lo3. For smaller Qir the collision efficiencies determined 
by the two techniques begin to diverge, which is not surprising considering the 
different approximations made. 

3.4. The limits h + l  and h+O 

When h = 1 the relative trajectory of the two spheres is independent of y (provided 
that y =+ l ) ,  and the collision efficiency is given by curve ( a )  in figure 2. On the other 
hand, it is evident also from figure 2 that the curve corresponding to the limit y = 1, 
h --f 1 must be very close to the one for y = 1, h = 0.9 - and hence quite different from 
that for h = 1 and arbitrary y .  When y = 1 and h-t 1 the relative trajectory of the 

7-2 



190 R. H .  Davis 

two spheres approaches a limiting shape, but this shape is not the same as the shape 
of the trajectory for h = 1 and y+ 1. The existence of the different trajectories in 
these two limits is the essential reason for the different, collision efficiencies. Of course 
Vij” = l(1- yA2) w)(, and the relative velocity a t  which the particles traverse these 
trajectories decreases towards zero when h + 1 and y + 1 ; hence Qi, decreases in the 
same manner, and Ei, increases (the particles spend more time in close proximity, 
thereby giving the van der Waals force a greater chance to bring them together). It 
should be remembered that ViJ) = 0 when A and y are each exactly unity, and 
Brownian diffusion is then dominant. For the present analysis to apply, either A or 
y ,  or both, must differ sufficiently from unity so that er is large. 

When h+O the situation is quite different from that discussed so far. In this case 
the smaller sphere follows the fluid streamlines as it moves around the larger sphere, 
and we have (see $2 in Batchelor 1982) 

L(s)  -- 1 - 3 ~ - ~ + 4 s - ~ + O ( h )  and M ( s )  = l - $ - l - - 2 ~ - ~ + O ( h ) .  (3.13a,b) 

These expressions have the asymptotic forms for h -4 4 1 of 

L(s)  - iE2+O([3)+O(hE) and M(s)  - $[+O((2 )+O(h) .  (3.14a,b) 

When r -  (ai+aj) is comparable to or smaller than the radius of the smaller sphere, 
(3.13) and (3.14) do not apply. However, as we shall see, for sufficiently small h the 
van der Waals force is strong enough to draw in the smaller sphere even when its 
distance from the larger sphere is several times its own radius. As h+O the van der 
Waals force is equal to that of a sphere near a plane, and for negligible retardation 
this is 

16h3 d& - 
ds 3[2(4h+[)2’ 

(3.15) 

Also, when A 4 E < 1, G(s) - 1 ,  and the interparticle force balances the gravitational 
force exactly at the point 

The limiting trajectory can be found as before by considering an outer region in which 
the interparticle force is negligible (6 9 6’) and an inner region where 6 = O(6’). The 
final result for the collision efficiency is found to be simply 

(3.16) 

Since Q .  is proportional to  A,  Eii is proportional to for small A. This result is of 
a? only limited practical importance since it applies only when pZj = Qij A/kT is large 

compared with unity and h is sufficiently small so that the condition h -4 6’ < 1 is 
satisfied. 

3.5. Distribution of capture sites 
In the preceding sections we computed the collision rate by examining the limiting 
trajectory. In some applications we may be interested in knowing not only the rate 
at which collisions take place but also the distribution of locations on the particle 
surfaces where contact occurs. The capture-site distribution may be computed 
directly from our trajectory analysis. Instead of integrating (3.10) starting at the 
termination point of the limiting trajectory, we start at  the termination point of a 
trajectory ending in contact, namely 7 = 0 for some B = 8, (see figure 1) .  After 
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integrating (3.10) in the direction of decreasing 8, the resulting trajectory is matched 
with the outer solution, and this yields the value of ym for the trajectory with contact 
a t  8 = 8,. The fraction of the collisions that occurs at values of 8 less than 8, is 

I found that 34.5% of the collisions occur in the 
range of 0 < 8, < in, 52.08% in the range in < Ot < an, 13.3 % in the range 
in ,< 8, < in, and only 0.2% in the range in < 8, < n. In  other words, the majority 
of the collisions take place on the front hemispheres of the particles, and only a small 
percentage of the spheres travel around to the back of another sphere before being 
captured. The percentages listed above are typical of several calculations of the 
capture-site distribution for various Qir and A (all with y = 1). 

(Yco/Yc)2* 
For h = 1, y = 1 and Qij = 

4. The effects of particle inertia 
When the particles are sufficiently massive, their inertia must be included when 

determining their trajectories, and the hydrodynamic forces no longer balance the 
applied forces. Also, the torque on the particles is non-zero. Instead, the net force 
and torque on each particle equal respectively its rate-of-change of linear momentum 
and angular momentum. We shall restrict our attention to dispersions in which the 
inertia of the surrounding fluid remains small, and so the hydrodynamic forces and 
torques are linear functions of the translational and rotational velocities of the 
particles. For convenience, we consider the translational motion of the two particles 
as being composed of their relative velocity and the velocity of the centre of mass 
of the pair. The momentum equations for the two-particle system, made dimensionless 
with J$) and +(ai + a*) as the characteristic velocity and length respectively, are then 

( 4 . 1 ~ )  

r r d o  . 
dr r r 

do. r r 
dr  r 

(4.1 c) SL = d 1 3 - x  U C , + d l 4 - X  Uij+dl,oi+d,,oj, 

(4.1d) S-? = d17; x ucm+d18- x Uij+dlaUi +d,,oj, 

where ucm is the velocity of the centre of mass, and wi and oj are the angular velocities 
of sphere i and spherej. The Stokes number is defined by 

with mi = $cpiaf being the mass of sphere i ,  and similarly for sphere j .  Also, the 
gravitational force coefficients are 



192 R. H .  Davis 

0.1 

El, 

0.0 

I I I I I 

1 102 103 I 0 4  105 1 0 6  

Q if 

FIGURE 3. The collision efficiency as a function of the parameter Qt, for y = 1, 
A = +, and S = 0, 1 ,  2 , 5  and 10. 

where p = pj /pt .  The coefficients d,, . .., d,, are functions of s and can be computed 
directly from the two-sphere resistance functions given by Jeffrey & Onishi (1984). 
I n  general, d,, . .., d,, also depend on the parameters A ,  y and p. The equation for the 
relative position of the two spheres is 

where s = r / r ,  which, along with (4.1) and the initial condition that the two spheres 
move with their terminal settling velocities when they are far apart, suffices to  
determine the relative trajectory of the pair. We note that the inertia parameter S 
is equal to the ratio of the relaxation time for the particle pair (i.e. the time that it 
takes one of the spheres to respond to changes in the flow caused by the presence 
of the other sphere) to  the time that i t  takes the spheres to move a distance relative 
to each other that  is equal to the sum of their radii. When S = 0 the particles follow 
the trajectories computed in § 3 ; as S increases from zero, the particles deviate from 
these trajectories -they tend to move in straight lines rather than flow around each 
other. Thus we expect the collision efficiency to increase as the Stokes number 
increases. We also note that the Stokes number is proportional to the particle density, 
whereas the Reynolds number is proportional to the fluid density. Therefore, only 
when the particle density is much greater than the fluid density may the particle 
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FIQURE 4. The collision efficiency as a function of the parameter Qw for y = 1 ,  
A = ?j, and S = 0, 0.5, 1.2, 2.4, 4.7 and 11.8. 

FIGURE 5. The collision efficiency a8 a function of the parameter Qtj for h = 1, /3 = y = i, and S = 0, 
3.5and8.8:-, unretardedvanderWaaIsforce (eR = 0) ; - - - - , cR  =0.2; - - - ,  l .O;-.- .-- ,5.0.  
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inertia be significant while the fluid inertia remains negligible. This is true, for 
example, in aerosol dispersions but not in hydrosol dispersions. 

The trajectory equations (4.1) and (4.3) were integrated numerically using a 
fourth-order Runge-Kutta scheme with a variable time step. The asymptotic forms 
of the resistance functions for widely separated spheres given by Jeffrey & Onishi 
(1984) were used for s > 4, and the nearly touching expressions of Jeffrey & Onishi 
were used for 6 = 5-2 < 0.01. I n  the intermediate range the resistance functions, 
correct to four figures, were computed by interpolating between pretabulated values. 
When the two spheres became close I found that the time step needed to be smaller 
than approximately CS in order for the solution to remain stable. This difficulty was 
overcome by noting that the radial component of the relative velocity v, is O(5)  when 
6 4 1 (the coefficient d, has a 5-l singularity when [ + O ) .  The term dv,/dr is then 
also O(6) in this range, and Sdv,/dr can be neglected relative to the other terms in 
the radial component of (4.1 b)  when S6 4 1. I included a switch in the program that 
reduced the order of the radial component of (4.1 b )  by setting S dv,/dr equal to zero 
for S[ < E (typically e = 0.02 was adequate). This equation was then rearranged to 
give an explicit expression for v, in terms of the other variables. In  general, three 
or four trajectories were computed for each case before the parameter yc that defines 
the limiting trajectory was found accurate to three figures. The results of these 
computations are shown in figures 3-5, where the collision efficiency is plotted as a 
function of the parameter Qij for various values of the Stokes number and for ( A ,  y ,  p) 
equal to (t, 1 , l )  (a,l,  1) and (1, +, i) respectively. The results are unchanged when A,  
y and p are replaced by A-l,  y-l and p-'. For S = 0 the collision efficiencies agree 
with the asymptotic results of 33; as S increases, Etj of course increases, and also the 
slope of the curve Eij versus Qij  moves towards zero. We expect as S+ 00 that the 
particle paths will become straight lines independent of one another, and the 
Smoluchowski result of Eij = 1 will be obtained. 

The effect of retardation of the interparticle force as given by (2.3) on the collision 
efficiency is also shown in figure 5. The retardation parameter eR is defined as the 
ratio of the boundary-layer thickness to the London wavelength, i.e. 

When eR is small compared with unity, the electromagnetic retardation is negligible 
within the boundary layer where the van der Waals force is important. On the other 
hand, when cR is large the van der Waals force is severely retarded, and this lowers 
the collision efficiency. We see from figure 5 that  when eR = 1 .O and S = 0 the collision 
efficiency is reduced by about 25 yo from the unretarded case. Values for eR of order 
unity are not uncommon in practice, and the retarded interparticle force potential 
should then be used. Finally, as the Stokes number is increased the effect of 
retardation is reduced because the inertia of the particles brings them closer together. 

5. Application to typical hydrosols and aerosols 
We have seen in $3 that  the collision efficiency Ei, decreases as the parameter QU 

increases, and in $4 that  Eij increases as the Stokes number S increases. For a given 
fluid-parti,cle system, however, Qij and S do not vary independently. In  fact, both 
Qi, and S increase as the radii of the particles increase, and so Eij may either increase 
or decrease when the particle radii increase. I n  order for us to gain a better 
understanding of the coagulation process, the collision efficiency as a function of the 
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0.0: 

FIQURE 6. The collision efficiency as a function of the radius of the larger sphere for a typical 
hydrosol; p = 0.01 P, p = 1.0 g cm-5, pi = pj  = 2p and A = 5 x erg: -, unretarded van der 
Waala force; - - - -, retarded van der Wads force. 

radius of the larger sphere has been computed for a typical hydrosol dispersion and 
for a typical aerosol dispersion. 

5.1. The collision efliciency for a hydrosol dispersion 

For the hydrosol we choose the values p = 0.01 P, p = 1.0 g pi = pj = 2p, 
A = 5 x lOP14 erg and kT = 4 x erg. In  this case p Z j  = 1.25&,,, and, when 
h = t ,  for example, pij  is greater than 10 provided that at 2 1.5 pm, and R, is 
less than 0.1 provided that at < 35 pm. Also, for these conditions, S = O.lORt, and 
the inertia of the particles is negligible. We then expect that E2j will decrease mono- 
tonically with increasing a,, and this is shown in figure 6 for h = ;, 4 and 0.9. The 
solid lines correspond to the unretarded van der Waals potential, and the dashed 
lines are for the retarded van der Waals potential. In  general, the collision efficiency 
is very low. When a, 2 10 pm the simple Smoluchowski impact model (Eij  = 1 )  over- 
estimates the rate of coagulation of a dilute sedimenting suspension by about two 
orders of magnitude. 

5.2. The collision efliciency for an aerosol dispersion 
In contrast with hydrosols, we expect particle inertia to play a significant role in the 
coagulation of aerosols. For a typical aerosol system, we choose p = 1.7 x P, 
p = 1.3 x 10-3 g cm-3, pr = p, = 1.0 g erg A = 5 x erg and kT = 4 x 
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FIQURE 7. The collision efficiency as a function of the radius of the larger sphere for a typical aerosol ; 
,u = 1.7 x P, p = 1.3 x lod3 g ~ m - ~ ,  pa = p, = 1.0 g and A = 5 x erg: -, 
unretarded van der Waals force; - - - -, retarded van der Wads force; . . . ., computed result for 
A = 4 when S = 0. 

(these values are appropriate for water droplets in the atmosphere). I n  this case, the 
Stokes number is of order unity when a, is approximately 10 pm. We thus expect 
that E, will decrease with increasing a, until a, x 10 pm, and then will increase as 
the particle inertia becomes important. This is indeed the case, as can be seen in 
figure 7, where Eij versus ai is given for h = i, and 0.9. Again, the solid lines are 
from using the unretarded van der Waals potential, and the dashed lines include the 
retardation effects. For comparison, the dotted line is the collision efficiency for h = 2 
under these conditions only with S = 0. Evidently, if particle inertia were neglected 
in aerosol dispersions having at 2 10 pm, the collision efficiency would then be 
severely underestimated. The effect of inertia is largest when h x + because, for 
p = y = 1,  the dependence of S as a function of h has a maximum when h = 1. When 
A+O the mass of the smaller particle is negligible, and S+O; when A+ 1 the relative 
velocity of the two spheres approaches zero, and again S+O. 

5.3. Comparison of the effects of van der Wads  forces and 
Maxwell slip for aerosol particles 

In the past the influence of van der Waals forces on the collision rate of aerosol 
particles has been neglected. Instead, the generally accepted mechanism responsible 
for allowing the particles to overcome the hydrodynamic resistance to contact is the 
effects of the discrete molecule nature of the surrounding air that become important 
when the gap between the two spheres is comparable to the main free path A, of 
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FIGURE 8. The collision efficiency of water droplets in air: -, unretarded van der Wads force 

and no slip; - - - - , Maxwell-slip flow model and no interparticle force. 

the molecules composing the air ( A ,  x 0.1 pm). This has been incorporated in a 
Maxwell-slip flow model presented by Hocking (1973) and by Davis (1972). In  this 
model, when the gap between the particles is comparable to the mean free path of 
the air molecules, the boundary condition of no slip at the sphere surfaces is replaced 
by the condition that the velocity of the air a t  the surface be proportional to the 
tangential stress there. The main result is that the force that opposes relative motion 
along the line of centres is no longer inversely proportional to the gap, but rather 
it is inversely proportional to the mean free path and only logarithmically dependent 
on the gap. Thus this gas-kinetic effect allows for collisions between particles to take 
place, and computations of the collision efficiency of water droplets using this model 
have been presented by Jonas (1972) and by Davis (1972). 

It is instructive to compare these results with the present results and to see the 
relative importance of Maxwell-slip flow and of van der Waals forces in promoting 
collisions between sedimenting aerosol particles. This can be made by considering the 

which is the ratio of the thickness of the boundary layer where the van der Waals 
force is important to the mean free path (note that since A, is approximately 0.1 pm 
in the atmosphere, 6 ,  is numerically equal to eR). When em is small the interparticle 
force becomes important a t  a value of the gap size for which Maxwell-slip effects are 
minor; for large em the situation is reversed. Moreover, since em is proportional to 
the first power of at, we expect that the van der Waals force will be most important 
for small particles. In  figure 8 Eij versus A is given for ai = 10, 20 and 30 pm using 
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FIQURE 9. The combined effect of van der Waals forces and Maxwell-slip flow on the collision 
efficiency of water droplets in air: -, unretarded van der Waals force and Maxwell-slip flow ; 
_ _ _ _  , retarded van der Waals force and Maxwell-slip flow. 

the same values of the physical parameters as for figure 7. The solid lines are from the 
present calculation with no slip a t  the drop surfaces and using (2.2) for the unretarded 
van der Waals potential. The dashed lines represent the Maxwell-slip flow model with 
no interparticle force. These latter curves were computed with the present numerical 
program, only with the force and torque coefficients in (4.1) modified in the same 
manner as described by Jonas (1972). They agree in all cases to within a few percent 
of the calculations presented by Jonas. From figure 8 it is apparent that the 
discrete-molecule effect gives a larger collision efficiency when a, is greater than 
20 pm, but that the interparticle force is the dominant mechanism for particles 
smaller than this. Thus the van der Waals force has a greater influence in promoting 
collisions of small drops in clouds than was earlier realized. 

Finally, since Maxwell-slip flow and van der Waals forces influence the trajectories 
of nearly touching spheres over comparable separations, we present in figure 9 the 
collision efficiency for cloud droplets computed from a trajectory analysis in which 
both of these effects were included. In  general, the collision efficiency is significantly 
higher than when either effect alone is considered, but its value is less than the sum 
of the separate contributions given in figure 8. The solid lines in figure 9 are for the 
unretarded van der Waals potential of (2.2), and the dashed lines are for the retarded 
potential given by (2.3). Electromagnetic retardation has negligible effect for the 
larger drops, but i t  lowers the collision efficiency by as much as 30 yo when at = 10 pm. 
The dashed lines in figure 9 provide an up-to-date replacement for the collision 
efficiencies of cloud droplets obtained by Jonas (1972), and can be used in dynamic 
models for the evolution of the droplet spectrum in a cloud. 
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